Семинарское занятие 12 (MATLAB)
Тема: HMM на синтетике/событиях (опционально) — генерация последовательностей, обучение (Baum–Welch), декодирование (Viterbi), оценка качества.
Цель занятия
1) Понять структуру скрытой марковской модели (HMM): A (переходы), B (эмиссии), π (начальное состояние).
2) Сгенерировать синтетические последовательности наблюдений (события/символы) с известными истинными состояниями.
3) Обучить HMM по наблюдениям с помощью hmmtrain (Baum–Welch / EM).
4) Восстановить последовательность скрытых состояний с помощью hmmviterbi и оценить качество.
5) (Опционально) Превратить непрерывный сигнал в дискретные события и повторить pipeline.
Инструменты MATLAB
Используются функции Statistics and Machine Learning Toolbox:
• hmmgenerate — генерация наблюдений и истинных состояний
• hmmtrain — обучение параметров A и B
• hmmdecode — вероятности состояний (Forward-Backward)
• hmmviterbi — декодирование наиболее вероятной цепочки состояний

Примечание: стандартные hmm* функции MATLAB работают с ДИСКРЕТНЫМИ наблюдениями (символами 1..M).
Входные данные
Основной вариант: синтетические последовательности событий (символы).
Опционально: реальные/синтетические временные ряды, которые вы дискретизируете в события (биннинг, пороги, квантизация).
Задание
1. Задать истинные параметры HMM: матрицу переходов A_true (K×K), матрицу эмиссий B_true (K×M), начальные вероятности pi_true.
2. Сгенерировать последовательность длины T: наблюдения seq (символы 1..M) и скрытые состояния st_true.
3. Обучить HMM по seq (без знания st_true): получить A_hat и B_hat (hmmtrain).
4. Декодировать состояния: st_vit = hmmviterbi(seq, A_hat, B_hat) и gamma = hmmdecode(seq, A_hat, B_hat).
5. Оценить качество: сравнить st_vit и st_true (accuracy) с учётом возможной перестановки меток кластеров/состояний (решить matching).
6. Построить confusion matrix истинных vs восстановленных состояний, а также графики состояния во времени (true vs decoded).
7. Сравнить log-likelihood до/после обучения и сделать вывод о сходимости.
8. (Опционально) Получить события из непрерывного сигнала (биннинг/пороги) и повторить шаги 3–6.
Что сдавать
1) MATLAB-скрипт: Seminar12_HMM_Synthetic_Events.m
2) Отчёт 1–2 страницы: A_true/A_hat и B_true/B_hat (таблицы), графики true vs decoded, confusion matrix, итоговая точность, краткий вывод.
3) (Опционально) реализация дискретизации сигнала в события и результаты для этого случая.
Критерии оценивания (макс. 15 баллов)
• Корректная генерация HMM (A, B, π) и данных — 3 б.
• Обучение hmmtrain + корректные настройки/инициализация — 4 б.
• Декодирование (Viterbi + постериоры) — 3 б.
• Оценка качества + matching меток + confusion matrix — 3 б.
• Анализ (log-likelihood, вывод) — 2 б.
Бонус +2 б: опциональная часть (события из временного ряда) + сравнение параметров/качества.
Шаблон кода MATLAB (копируйте и запускайте)
%% Seminar 12: HMM on synthetic discrete events (symbols) + optional event extraction
rng(42);

%% 1) True HMM parameters (K states, M observation symbols)
K = 3;          % number of hidden states (e.g., {Normal, Load, Pre-fault})
M = 4;          % number of symbols/events (1..M)

% Transition matrix A_true (rows sum to 1)
A_true = [0.90 0.09 0.01;
          0.05 0.90 0.05;
          0.02 0.18 0.80];

% Emission matrix B_true (rows sum to 1): P(obs=s | state=k)
% State 1 emits mostly symbol 1; State 2 -> symbol 2/3; State 3 -> symbol 4
B_true = [0.70 0.20 0.08 0.02;
          0.10 0.45 0.40 0.05;
          0.05 0.10 0.25 0.60];

% Initial state distribution
pi_true = [0.80 0.15 0.05];

%% 2) Generate synthetic sequence
T = 400;
[seq, st_true] = hmmgenerate(T, A_true, B_true, 'Statenames', 1:K);

% seq: 1..M, st_true: 1..K
fprintf('Generated: T=%d, K=%d, M=%d\n', T, K, M);

%% 3) Train HMM from observations ONLY (Baum-Welch / EM)
% IMPORTANT: hmmtrain is sensitive to initialization -> use random + multiple runs
nRuns = 5;
maxLL = -inf;
A_hat = []; B_hat = []; LL_best = [];

% Initial guesses (must be stochastic matrices)
A0 = normalize(rand(K,K),2);
B0 = normalize(rand(K,M),2);

for r = 1:nRuns
    % random init each run
    A_init = normalize(rand(K,K),2);
    B_init = normalize(rand(K,M),2);

    % Train
    % TolFun and MaxIterations control convergence
    [A_tmp, B_tmp, LL] = hmmtrain(seq, A_init, B_init, ...
        'Maxiterations', 200, 'TolFun', 1e-6, 'Verbose', false);

    finalLL = LL(end);
    fprintf('Run %d: final logL=%.3f (iters=%d)\n', r, finalLL, numel(LL));

    if finalLL > maxLL
        maxLL = finalLL;
        A_hat = A_tmp;
        B_hat = B_tmp;
        LL_best = LL;
    end
end

fprintf('Best final logL=%.3f\n', maxLL);

%% 4) Decode states: Viterbi + posterior (gamma)
st_vit = hmmviterbi(seq, A_hat, B_hat);
[~, gamma] = hmmdecode(seq, A_hat, B_hat); % gamma(k,t)=P(state=k|seq)

%% 5) Matching decoded state labels to true states (because states can be permuted)
% Build confusion matrix between true and decoded
C = confusionmat(st_true, st_vit);  % KxK
disp('Raw confusion (true rows, decoded cols):'); disp(C);

% Solve assignment to maximize diagonal (Hungarian)
% Requires Optimization Toolbox: matchpairs. If not available, brute force perms for small K.
useMatchPairs = exist('matchpairs','file') == 2;

if useMatchPairs
    % matchpairs minimizes cost, so use negative counts as cost
    cost = -C;
    pairs = matchpairs(cost, -1e9);  % force full matching
    % pairs: [trueState, decodedState]
    map = zeros(1,K);
    for i=1:size(pairs,1)
        map(pairs(i,2)) = pairs(i,1); % decoded -> true
    end
else
    % brute force for small K
    permsK = perms(1:K);
    bestAcc = -inf; bestMap = 1:K;
    for p = 1:size(permsK,1)
        m = permsK(p,:); % decoded j corresponds to true m(j)
        st_m = m(st_vit);
        acc = mean(st_m(:) == st_true(:));
        if acc > bestAcc
            bestAcc = acc;
            bestMap = m;
        end
    end
    map = bestMap; % decoded j -> true map(j)
end

st_vit_mapped = map(st_vit);
acc = mean(st_vit_mapped(:) == st_true(:));
fprintf('Viterbi accuracy after label matching: %.3f\n', acc);

%% 6) Visualizations
figure;
subplot(3,1,1);
stairs(st_true,'LineWidth',1); ylim([0.5 K+0.5]); grid on;
title('True hidden states'); ylabel('state');

subplot(3,1,2);
stairs(st_vit_mapped,'LineWidth',1); ylim([0.5 K+0.5]); grid on;
title('Decoded states (Viterbi, mapped)'); ylabel('state');

subplot(3,1,3);
stairs(seq,'LineWidth',1); ylim([0.5 M+0.5]); grid on;
title('Observations (symbols)'); ylabel('symbol'); xlabel('t');

figure;
confusionchart(categorical(st_true), categorical(st_vit_mapped));
title(sprintf('Confusion matrix (mapped) | Acc=%.3f', acc));

figure;
plot(LL_best,'-o'); grid on;
xlabel('Iteration'); ylabel('log-likelihood'); title('hmmtrain convergence (best run)');

%% 7) Compare true vs learned parameters (up to permutation)
% NOTE: A_hat, B_hat correspond to decoded state labels; after mapping, reorder A_hat/B_hat to match true order
% Reorder indices so that learned state i corresponds to true i
% map: decoded -> true. We need inverse mapping: true -> decoded
invmap = zeros(1,K);
for j=1:K
    invmap(map(j)) = j;
end
A_re = A_hat(invmap, invmap);
B_re = B_hat(invmap, :);

disp('A_true:'); disp(A_true);
disp('A_hat (reordered):'); disp(A_re);
disp('B_true:'); disp(B_true);
disp('B_hat (reordered):'); disp(B_re);

%% 8) OPTIONAL: build events from a continuous signal and run HMM
% Example: synthetic signal with 3 regimes -> discretize to M symbols by quantization
doOptional = false;
if doOptional
    t = (1:T)';
    sig = 0.2*randn(T,1);
    sig(st_true==2) = sig(st_true==2) + 1.0;   % regime shift
    sig(st_true==3) = sig(st_true==3) + 2.0;

    % Quantize into M symbols (bins)
    edges = quantile(sig, linspace(0,1,M+1)); edges(1) = -inf; edges(end) = inf;
    seq2 = discretize(sig, edges); % 1..M
    
    % Train & decode similarly:
    A_init = normalize(rand(K,K),2);
    B_init = normalize(rand(K,M),2);
    [A2, B2, LL2] = hmmtrain(seq2, A_init, B_init, 'Maxiterations', 200, 'TolFun', 1e-6);
    st2 = hmmviterbi(seq2, A2, B2);
    % ... matching + plots as above
end

%% Helper: row normalization
function Xn = normalize(X,dim)
s = sum(X,dim);
Xn = X ./ s;
end

Подсказки по интерпретации результатов
• Если silhouette/кластеры вам знакомы: HMM похож на “кластеризацию во времени”, но с переходами между кластерами (состояниями).
• Если accuracy низкая: попробуйте увеличить T, сделать более различимые эмиссии (B_true), увеличить число запусков nRuns, либо изменить K/M.
• Лейблы состояний в HMM могут поменяться местами — поэтому нужен matching (перестановка меток).
• Для реальных данных сначала выделяйте события/символы (квантизация, пороги, дискретизация).
Примечания
• hmmtrain чувствителен к инициализации — используйте несколько запусков и выбирайте лучшую log-likelihood.
• При K>5 лучше применять алгоритм соответствия (Hungarian) через matchpairs (если доступен), иначе перебор перестановок станет дорогим.
• В этом семинаре используются дискретные наблюдения. Для непрерывных эмиссий обычно применяют GMM-HMM или другие реализации.
